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In this paper, we present an approach to shape-preserving approximation based on

interpolation space theory. In particular, we prove the corresponding approximation

result related to the intersection property of the cone of nonnegative functions with

respect to the couple ðLp ;Ba;1
p Þ: # 2002 Elsevier Science (USA)
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1. INTRODUCTION

It has been known that the quantitative approximation theory is closely
connected with the real interpolation method. This connection has been
investigated by Peetre and Sparr [24] within the framework of their
interpolation theory of abelian groups, and Brudnyi [4] and by Brudnyi and
Krugljak [6], [7] using the concept of an ’’approximation family’’. Some new
results and applications in the latter direction were presented in the papers
of Pietsch [25], and DeVore and Popov [11]. In this paper, we would like to
present an interpolation space approach to a new area of quantitative
approximation theory, namely, to approximation with constraints, see e.g.
[10, 12, 15, 16, 22, 27, 30, 31]. It is worth noting that these and other papers
on this subject considered only univariate functions. We hope that the
approach presented here might be useful in many applications for the
multivariate case. We will choose a relatively simple (but highly nontrivial)
approximation model of such a kind (see Theorem B) to show how results of
interpolation theory for operators preserving a convex cone structure can
work in this situation.

In order to formulate the main results we need a few basic definitions and
the corresponding preliminary results.

Definition 1.1. An approximation family A ¼ fAng
1
n¼1 is a collection

of subsets An of a Banach space X satisfying the conditions:
23
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1. An þ Am � Amþn; n;m 2 N;
2. lAn � An; n 2 N; l 2 R

(in particular, 0 2 An and An � Anþ1).

We put A0 :¼ f0g and A1 :¼ X ; and denote the sequence fAn; n 2
Zþ
S
fþ1gg by A:

Suppose now that Q is a convex cone in Banach space X : For every
x 2 X \ Q we set

eQ
An

ðxÞX :¼ inffjjx � ajjX ; a 2 An \ Qg

and define the approximation cone EQ
a;pðAÞ to be the set of elements x 2

X \ Q satisfying

jjxjjEQ
a;pðAÞ :¼

X1
n¼0

ðn þ 1Þ�1ððn þ 1ÞaeQ
An

ðxÞX Þ
p

( )1=p

51: ð1:1Þ

Here 14p41 and 05a51: Quantity (1.1) defines a quasinorm on the
cone EQ

a;pðAÞ:
Let Y be a linear space equipped with a semi-norm j 
 jY ; linearly

embedded in X :

Definition 1.2 (DeVore and Lorentz [9]). (a) An approximation
family A\ Q satisfies the abstract Jackson inequality with respect to Y if

eQ
An

ðxÞX4Cn�r jxjY ; x 2 Y \ Q ð1:2Þ

is valid for all n ¼ 1; 2; . . . :
(b) A satisfies the abstract Bernstein inequality with respect to Y if

jjjY4Cnr jjjjjX ; j 2 An ð1:3Þ

is valid for n ¼ 1; 2; . . . :
Here r > 0 is a fixed number and C1;C2 > 0 are absolute constants.

Our next definition introduces the interpolation cone ðX ; Y \ QÞyq; y 2
ð0; 1Þ; q 2 ½1;1� as the subset of elements x 2 X \ Q satisfying

jjxjjðX ;Y\QÞyq :¼ jjKðx; 
;X ; Y \ QÞjjLy
qðdt=tÞ

51;

where

Kðx; t;X ; Y \ QÞ :¼ inf
y2Q\Y

fjjx � yjjX þ tjjyjjY g ðt > 0Þ
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and

jjf jjLy
qðdt=tÞ

:¼
Z 1

0

f ðtÞ
ty

����
����
q dt

t

� �1=q

:

It may be noted that K-functionals with cone constraints of a different
kind were introduced in [18, 19, 26, 28, 29].

Remark 1.3. The same definitions of the interpolation cone ðX0;X1 \
QÞyq and Kðx; 
;X0;X1 \ QÞ can be related to the case of a Banach couple
%XX ¼ ðX0;X1Þ and a convex cone Q � X0 þ X1:

The following simple result can be derived in the precisely same
manner as Theorem 9.3 of [9].

Proposition 1.4. (a) Suppose that condition (1.2) holds. Then for every

x 2 X \ Q and n ¼ 1; 2; . . .

eQ
An

ðxÞX4ðC þ 1ÞKðx; n�r;X ; Y \ QÞ; n 2 N: ð1:4Þ

Here C > 0 is an absolute constant.
(b) If, in addition, the condition (1.3) also holds, then

EQ
a;qðAÞ ¼ ðX ; Y \ QÞa=r;q ð1:5Þ

with equivalence of their (quasi) norms.

We now introduce the notion of intersection properties which allows to
reduce the real interpolation for cones to the classical real interpolation, see,
e.g. [20, 21, 28, 29].

Let %XX ¼ ðX0;X1Þ and Q be as in Remark 1.3.

Definition 1.5. Q has the right intersection property ðIPþÞ with respect
to %XX if

ðX0 þ tX1Þ \ Q � X0 þ tðX1 \ QÞ ð1:6Þ

with an embedding constant independent of t:

In other words, the IPþ is equivalent to the two-sided inequality

Kðx; t;X0;X1 \ QÞ � Kðx; t; %XX Þ ðt > 0; x 2 QÞ ð1:7Þ

with constants of equivalence independent of x and t:
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Since the right-hand side is evidently dominated by the left one, the main
point is to prove the inequality

Kðx; t;X0;X1 \ QÞ4cKðt; x; %XX Þ; ðf 2 Q; t > 0Þ ð1:8Þ

with c independent of x and t:
The IPþ implies the following isomorphism of the cones:

Q \ ðX0;X1 \ QÞyq ¼ %XX yq \ Q ð05y51; 14q41Þ: ð1:9Þ

Definition 1.6. Q has the weak right intersection property ðWIPþÞ with
respect to %XX if isomorphism (1.9) holds for every y 2 ð0; 1Þ; q 2 ½1;1�:

For the results related to shape-preserving approximation we also need

Definition 1.7. A cone Q is said to have the restricted WIPþ with
respect to %XX for a fixed y 2 ð0; 1Þ; if the isomorphism

Q \ ðX0;X1 \ QÞyq ¼ %XX yq \ Q ð1:10Þ

holds for every q 2 ½1;1�:

The next result shows the role of the intersection properties for
approximation with constraints.

Proposition 1.8. (a) Suppose that condition (1.2) holds. Let Q; in

addition, have the IPþ with respect to ðX ; Y Þ: Then for every x 2 X \ Q and

n 2 N

eQ
An

ðxÞX4CKðx; n�r;X ; Y Þ: ð1:11Þ

Here C > 0 is an absolute constant.
(b) Suppose that conditions (1.2) and (1.3) hold. Let, in addition, Q have the

restricted WIPþ with respect to ðX ; Y Þ for y :¼ a
r: Then

EQ
a;qðAÞ ¼ Ea;qðAÞ \ Q:

Here 05a5r and 05q41:

Proof. (a) The result immediately follows from Proposition 1.4(a) and
the IPþ:

(b) From Proposition 1.4(b) and the restricted WIPþ with y :¼ a
r we have

EQ
a;qðAÞ ¼ ðX ; Y \ QÞa

r;q
¼ ðX ; Y Þa

r;q
\ Q:

But ðX ; Y Þa
r;q

¼ Ea;qðAÞ; see e.g. [9], and the proof is complete. ]
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In order to formulate the basic result of this paper, we introduce:

Definition 1.9. For a > 0 we write r ¼ ½a� þ 1: The semi-normed Besov

space ’BB
a;1
p ð½a; b�Þ; 14p41 consists of all functions f 2 Lp½a; b� for which

the semi-norm

jf j ’BBa;1
p

:¼ sup
t>0

ðt�aorðf ; tÞLp ½a;b�Þ

is finite.

The normed Besov space Ba;1
p ð½a; b�Þ by definition equals Lp

T
’BB
a;1
p : Here

or denotes the modulus of smoothness of order r:
’WW

k
p :¼ ’WW

k
p½0; 1� denotes also the Sobolev space of functions f 2 Lp½0; 1�

equipped by the semi-norm jf ðkÞjLpð0;1Þ:
Let now M0 :¼ M0½0; 1� be the cone of nonnegative functions on ½0; 1�:

Theorem A. Let 14p41 and a > 1=p: Then

(i) M0 has the IPþ with respect to the couple ðLp; ’WW
1

pÞ:
(ii) M0 has the restricted WIPþ with respect to the couple ðLp; ’BB

a;1
p Þ for

each y > 1
pa; see Definition 1.7.

These interpolation results allow us to demonstrate a new approach to the
problem of shape-preserving approximation. We choose for this goal a
result of positive spline approximation (see Theorem B). Another approach
of this type is seen in [15, 16]. In what follows, we require the following
notions.

Let pn be a subdivision of ½0; 1Þ into the n half-open from the right
intervals which are obtained by the following procedure. Write n in the form
n ¼ 2k þ j; where n=252k4n and 04j52k (the representation is, clearly,
unique). Divide ½0; 1� into 2k equal intervals and then divide each of the first
j intervals from the left in half. The subdivision obtained will be denoted by
pn :¼ fDi;ng

n
i¼1:

Definition 1.10. A function s : ½0; 1� ! R is said to be a spline of order
k and smoothness l; if s 2 Cl½0; 1� and the restriction of s to each interval Di;n

of the subdivision pn is a polynomial of degree not exceeding k � 1: We
denote the linear space of such splines by Sk;l

n ½0; 1�:

When k52 we shall always assume that 04l4k � 2: (Otherwise Sk;l
n is

simply Pk�1:) We shall also consider the case of k ¼ 1; i.e. the space of step
functions which are constant on each of the intervals Di;n; i ¼ 1; 2; . . . ; n: We
let l ¼ �1 in this case (more generally, Sk;�1

n is the linear space of (possibly
discontinuous) functions whose restrictions to each interval Di;n of the
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subdivision pn are polynomials of degree not exceeding k � 1). Let

sM0

n;k;lðf ; LpÞ :¼ inf
sn2S

k;l
n \M0

jjf � snjjLpð0;1Þ:

In the case of splines of maximal smoothness, i.e., l ¼ k � 2; we will omit
the index l in all the preceding notation.

Theorem B. (a) Let p 2 ½1;1�: If f 2 Lpð0; 1Þ \ M0 then

sM0

n;1ðf ; LpÞ4Co1 f ;
1

n

� �
Lp

; n 2 N; ð1:12Þ

where C is a constant independent of n:
(b) The function f belongs to Ba;1

p \ M0; a > 1
p; if and only if

there is a sequence fSn 2 Sk;l
n ½0; 1� \ M0g

1
n¼1 of splines of degree k ¼ 3r þ 4

and smoothness l ¼ r þ 1; where r is the smallest integer > a; such
that

sup
n2N

najjf � SnjjLpð0;1Þ51: ð1:13Þ

Remark. (i) Taking into account part (a) of the theorem, we see that
actually, for all a in the larger range a > 0; except when a ¼ p ¼ 1; the
condition f 2 Ba;1

p \ M0 always implies (1.13).
(ii) Part (a) of this theorem is a special case of Theorem 4 in [15],

formulated in this paper without proof. Apparently, statement (b)
may also be proved by methods of paper [16], see proof of Theorem 15
therein.

2. PROOF OF THEOREM A

(i) Let f 2 Lp and f50: Set for 04x41 � t

ftðxÞ :¼
1

t

Z xþt

x
f ðsÞ ds ð2:14Þ

and extend it to ½1 � t; t� by ftðxÞ :¼ ftð1 � tÞ:
Then ftðxÞ 2M0 ½0; 1� \ ’WW

1

p and therefore

Kðf ; t;Lp \ M0; ’WW
1

p \ M0Þ4jjf � ftjjLp
þ tjjf 0

t jjLp
: ð2:15Þ

Since Kðf ; t; Lp; ’WW
1

pÞ � o1ðf ; tÞLp
(see, e.g. [9]) it remains to prove that

the right-hand side of (2.15) is bounded by o1ðf ; tÞLp
.
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We have

jjf � ftjj
p
Lp

¼
Z 1�t

0

1

t

Z t

0

½f ðxÞ � f ðx þ sÞ� ds

����
����
p

dx

þ
Z 1

1�t
jf ðxÞ � ftð1 � tÞjp dx :¼ I1 þ I2:

By H .oolder’s inequality we get

I14
1

t

Z t

0

ds
Z 1�t

0

jf ðxÞ � f ðx þ tÞjp dx4op
1 ðf ; tÞLp

Applying now the Lebesgue inequality (cf. [9, p. 30]) and then a Whitney-
type inequality (see the general case in [2]) we get

I24CE0ðf ; ½1 � t; 1�ÞpLp
4Cop

1 ðf ; tÞLp
: ð2:16Þ

Here and below C denotes an absolute constant, not necessarily the same
(in this case, independent of f and t). Putting these inequalities together we
get

jjf � ftjjLp
4Co1ðf ; tÞLp

:

To estimate the second term of (2.15) we note that for a.e. x 2 ½0; 1�

f 0
t ðxÞ ¼

1
tDtf ðxÞ if 04x41 � t;

0 if 1 � t5x41:

(

Therefore

tjjf 0
t jjLp

4o1ðf ; tÞLp
;

whence the result follows.
(ii) We have to prove that

ðLp; ’BB
a;1
p \ M0Þy;qðLp; ’BB

a;1
p Þy;q \ M0;

where a > 1=p: This embedding is a consequence of the following:

Proposition 2.1. Let f 2 Lp½0; 1� \ M0; where 14p41 and let r > 1=p
be an integer. Then for every t 2 ð0; 1� there is a function ht 2 W r

p \ M0
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such that

jjf � htjjLpð0;1Þ þ tr jjhðrÞt jjLpð0;1Þ

4C t1=p
Z t

0

orðf ; sÞLp

s1þ1=p
ds þ tr

Z 1

t

orðf ; sÞLp

srþ1
ds


 �
: ð2:17Þ

Proof. We can suppose that
R t

0

orðf ;uÞLp
u1þ1=p du51 which implies that f

coincides a.e. with a continuous function on ½0; 1�: It suffices to construct ht

with t ¼ 1
n; n 2 N: Consider first the case n52: Introduce a subdivision pn of

the interval ½0; 1� into the subintervals In;k where In;k :¼ ½xn;k�1; xn;kÞ; k ¼
1; . . . ; n � 1 and In;n :¼ ½xn;n�1; xn;n�; xn;0 ¼ 0 and xn;n ¼ 1 satisfying the
condition that there are constants a;b > 0 independent of k and n; such that

a
n
4jIn;k j4

b
n
: ð2:18Þ

Consider the enlargements of In;k defined as follows: *IIn;k :¼ ½an;k ; xn;k�;
k ¼ 2; . . . ; n; where an;k :¼

xn;k�1þxn;k�2

2
; and *IIn;1 ¼ ½0; xn;1�:

Let Pn;k 2 Pr�1ð *IIn;kÞ be the polynomial of best uniform approximation
of f 2 M0ð *IIn;kÞ: Then *PPn;k :¼ Pn;k � minfinf *IIn;k

Pn;k ; 0g is a nonnegative
polynomial providing near best approximation on *IIn;k:

jjf � *PPn;k jjL1ð *IIn;k Þ4 2jjf � Pn;k jjL1ð *IIn;kÞ ¼ 2Er�1ðf ; *IIn;kÞL1ð0;1Þ

4 2gor f ;
j *IIn;k j
r

� �
L1ð *IIn;kÞ

: ð2:19Þ

The last inequality follows from Whitney’s theorem and g does not depend
on f and *IIn;k :

We now construct the required sequence fhn;kg14k4n:
Set for x 2 ½0; xn;1�

hn;1ðxÞ :¼ *PPn;1ðxÞð50Þ:

Suppose now that hn;j have already been defined for j ¼ 1; . . . ; k; where
k5n: We define hn;kþ1 by

hn;kþ1ðxÞ :¼

hn;kðxÞ if 04x4an;kþ1;

*PPn;kðxÞ½1 � rn;kðxÞ� þ *PPn;kþ1ðxÞrn;kðxÞ if an;kþ15x4xn;k ;

*PPn;kþ1ðxÞ if xn;k5x4xn;kþ1;

8><
>:
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where

rn;kðxÞ :¼ bn;k

Z x

an;kþ1

ðt � an;kþ1Þ
rðxn;k � tÞr dt

and the normalizing coefficient bn;k is determined by the condition

rn;kðxn;kÞ ¼ 1:

Then 04rn;kðxÞ41 for x 2 ½an;kþ1; xn;k�:
It is the matter of checking definition that fhn;kg has the following

properties:

(a) hn;k 2 Cr½0; xn;k� \ M0;
(b) hn;k ¼ *PPn;k for xn;k�15x4xn;k;
(c) jjf � hn;k jj

p
Lp ½0;an;kþ1�4

ð2Cða;bÞgÞp

n f2
P

14j4k�1 o
p
r ðf ;

j *IIn;j j
r ÞL1ð *IIn;jÞ þ op

r

ðf ; j
*IIn;k j
r ÞL1ð *IIn;kÞg:

Thus, the sequence fhn;kg14k4n has yet to be constructed. Now define the
desired function ht with t ¼ 1

n by

ht :¼ hn;n:

Then ht 2 Cr½0; 1� \ M0 by (a). Moreover,

jjf � htjj
p
Lp ½0;an;nþ1�4

ð2Cða;bÞgÞp

n
2

X
14j4n�1

op
r f ;

j *IIn;jj
r

� �
L1ð *IIn;jÞ

(

þop
r f ;

j *IIn;nj
r

� �
L1ð *IIn;nÞ

)
:

Since ht :¼ hn;n :¼ *PPn;nðxÞ if x 2 ½an;nþ1; 1� � *IIn;n; we also have

jjf � htjj
p
Lp ½an;nþ1;1�4

ð2Cða;bÞgÞp

3n
op

r f ;
j *IIn;nj
r

� �
L1ð *IIn;nÞ

:

These two inequalities lead to the estimate

jjf � htjj
p
Lp ½0;1�4

2ð2Cða;bÞgÞp

n

X
14j4n

op
r f ;

j *IIn;jj
r

� �
L1ð *IIn;jÞ

:
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We now recall the embedding estimate already used at the beginning of
the proof

orðf ; tÞL1ða;bÞ4CðrÞ
Z t

0

orðf ; sÞLpða;bÞ

s1þ1=p
ds:

Using this together with an integral form of Minkowski’s inequality, we
then obtain

jjf � htjjLp ½0;1�

4Cða; b; gÞn�1=p
Z Cða;bÞ

nr

0

s�1�1=p
X

14j4n

op
r ðf ; sÞLpð *IIn;jÞ

( )1=p

ds: ð2:20Þ

To estimate the sum in (2.20) we apply the following result (see [3,
Theorem 4, Section 2] or [5, Theorem 1]):

orðf ; sÞLpða;bÞ � sup
p

X
I2p

Erðf ; IÞ
p
Lp

( )1=p

s5
b � a

r

� �
; ð2:21Þ

where the supremum is taken over all families p of nonoverlapping
subintervals of ½a; b� of length s and the constants of equivalence depend
only on r and p: From here it follows that for all s 2 ð0; Cða;bÞnr Þ we have

Xn

k¼1

op
r ðf ; sÞLpð *IIn;k Þ

( )1=p

4C
Xn

k¼1

X
I2pn;k

Erðf ; IÞ
p
Lp

( )1=p

: ð2:22Þ

Here pn;k is a family from (2.21) (with ½a; b� :¼ *IIn;k) for which the supremum
is attained within E: Because of the choice of intervals *IIn;k ; any two intervals
I 2 pn;k and I 0 2 pn;kþ2 are nonoverlapping. Dividing the family

Sn
k¼1 pn;k into

two subfamilies of nonoverlapping intervals and applying (2.21) to each of
these families we estimate the right-hand side of (2.22) by C1orðf ; sÞLpð0;1Þ
with C1 depending only on r:

From this estimate and (2.20) it follows that jjf � htjjLp ½0;1� is dominated

by CCðCða;bÞnr Þ; where CðtÞ :¼ t1=p
R t

0

orðf ;sÞLp ð0;1Þ

s1þ1=p ds; t > 0:

Since CðCða;bÞnr Þ4Cða;b; rÞCð1nÞ this leads to the inequality

jjf � htjjLp ½0;1�4CCðtÞ t ¼
1

n

� �
: ð2:23Þ

To obtain (2.17) it now remains to estimate the Sobolev norm of
htð:¼ hn;nÞ: Since hn;n is a spline of degree 43r with almost uniformly
distributed knots, we can apply Markov’s inequality (see, e.g. [9, p. 103]) to
estimate
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ðh2t � htÞ
ðrÞ with t ¼ 1

n: So we have

jjðh2t � htÞ
ðrÞjjLp ½0;1�4

Xn

k¼1

jjðh2t � htÞ
ðrÞjjp

Lpð *IIn;k Þ

( )1=p

4Ct�rCð2tÞ: ð2:24Þ

Choose m 2 N such that 2�m�15t ¼ 1
n42�m:

Then

jjhðrÞt jjLp ½0;1�4
Xm
j¼1

jjðh2jt � h2j�1tÞ
ðrÞjjLp ½0;1� þ jjhðrÞ2mtjjLp ½0;1�: ð2:25Þ

Since h2mt :¼ h1 :¼ h1;1 is, by construction, a polynomial of degree 4r � 1;
hðrÞ2mt ¼ 0 and from (2.24) and (2.25) we deduce that

jjhðrÞt jjLp ½0;1�4C
Xm
j¼1

ð2jtÞð1=p�rÞ
Z 2jt

0

orðf ; sÞLp ½0;1�

s1þ1=p
ds

¼C
Xm
j¼1

Z 2jt

2j�1t

Z 2jt

0

orðf ; sÞLp ½0;1�

s1þ1=p
ds

 !
du

ur�1=pþ1
: ð2:26Þ

By elementary properties of or (see, e.g. [9, p. 45]) the preceding

expression is dominated by ft�rþ1=p
R t

0

orðf ;sÞLp ½0;1�

s1þ1=p ds þ
R 1

t

orðf ;sÞLp ½0;1�

srþ1 dsg:
Together with (2.23) this proves inequality (2.17) in case t ¼ 1=n and

n52:
It remains to consider the case t ¼ 1: Let P be a polynomial of degree

4r � 1 for which

jjf � P jjL1½0;1� ¼ Er�1ðf ; ½0; 1�ÞL1
:

Set h1 :¼ P � minfinf ½0;1� P ; 0g: Exactly as in the argument just after (2.19)
we get

jjf � h1jjLp ½0;1� þ jjhðrÞ1 jjLp ½0;1� ¼ jjf � h1jjLp ½0;1�

4 jjf � h1jjL1½0;1�4C
Z 1

0

orðf ; sÞLp ½0;1�

s1þ1=p
ds ð2:27Þ

The proof of the proposition is complete. ]



INNA KOZLOV34
Corollary 2.2. If y > 1
rp; then

M0 \ ðLp; ’WW
r
p \ M0Þy;q ¼ ðLp; ’WW

r
p \ M0Þy;q ¼ ðLp; ’WW

r
pÞy;q \ M0:

Proof. For each f 2 ðLp; ’WW
r
pÞy;q \ M0 � Lp \ M0 we have from Propo-

sition 2.1 that

*KKðtrÞ :¼Kðf ; tr; Lp; ’WW
r
p \ M0Þ

4C t1=p
Z t

0

orðf ; uÞLp

u1þ1=p
du þ tr

Z 1

t

orðf ; uÞLp

urþ1
du

� �
:

Applying the Lry
q ð

dt
t Þ-norm to both sides and then using Hardy’s

inequalities, we have for y > 1
rp

jj *KK jjLry
q ðdt=tÞ 4C t1=p

Z t

0

orðf ; uÞLp

u1þ1=p
du

����
����

����
����
Lry

q ðdt=tÞ
þ tr

Z 1

t

orðf ; uÞLp

urþ1
du

����
����

����
����
Lry

q ðdt=tÞ

" #

4Cjjorðf ; 
ÞLp
jjLry

q ðdt=tÞ: ð2:28Þ

This last expression is equivalent to the Lry
q ðdt=tÞ norm of the function

Kðf ; tr;Lp; ’WW
r
pÞ; i.e. we have shown that jj *KK jjLry

q ðdt=tÞ4Cjf jðLp ; ’WW
r
pÞy;q

: Since
the reverse inequality is obvious, this shows that M0 \ ðLp; ’WW

r
p \ M0Þy;q

¼ ðLp; ’WW
r
pÞy;q \ M0: Finally, it is easy to check that any function in ðLp;

’WW
r
p \ M0Þy;q must be nonnegative a.e. and so ðLp; ’WW

r
p \ M0Þy;q ¼ M0 \

ðLp; ’WW
r
p \ M0Þy;q completing the proof of the corollary. ]

To complete the proof of Theorem A it suffices to show that for f 2 M0

jjKðf ; 
; Lp; ’BB
a;1
p \ M0ÞjjLZ

qðdt=tÞ4CjjKðf ; 
; Lp; ’BB
a;1
p ÞjjLZ

qðdt=tÞ; ð2:29Þ

provided

1

pa
5Z51 and 14q41: ð2:30Þ

Given any a > 1=p we set r ¼ ½a� þ 1 and y ¼ a
r: Then

ðLp; ’WW
r
pÞy;1 ¼ ’BB

a;1
p
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and y > 1
rp: So we can apply Corollary 2.2 to obtain that for each f 2 M0

Kðf ; t;Lp; ’BB
a;1
p \ M0Þ4CKðf ; t; Lp; ðLp; ’WW

r
pÞy;1 \ M0Þ

4CKðf ; t; Lp; ðLp; ’WW
r
p \ M0Þy;1Þ: ð2:31Þ

To estimate this last expression we apply a following variant of
Holmstedt’s formula (for proof see [21]).

Proposition 2.3. Suppose that for fixed y 2 ð0; 1Þ and q 2 ½1;1� the

isomorphism

Q \ ðX0;X1 \ QÞy;q ¼ ðX0;X1Þy;q \ Q

holds. Then

Kðf ; ty;X0; ðX0;X1 \ QÞy;qÞ � ty
Z 1

t
½s�yKðf ; s;X0;X1 \ QÞ�q

ds
s

� �1=q

:

Combining Corollary 2.2 and this proposition we get

jjKðf ; t;Lp; ’BB
a;1
p \ M0ÞjjLZ

qðdt=tÞ4C t sup
s5t1=y

Kðf ; s; Lp; ’WW
r
p \ M0Þ

sy

�����
�����

�����
�����
LZ

qðdt=tÞ

: ð2:32Þ

To estimate the right-hand side of (2.32) we note that, since the function
KðsÞ :¼ Kðf ; s; Lp; ’WW

r
p \ M0Þ is increasing, it satisfies

KðsÞ
sy

4ðqyÞ1=q
Z 1

s

KðuÞ
uy

� �qdu
u

� �1=q

for every s > 0: Then taking the supremum over s5t1=y and changing the
order of integration we get

t sup
s5t1=y

Kðf ; sÞ
sy

�����
�����

�����
�����
q

LZ
qðdt=tÞ

4 ðqyÞ
Z 1

0

tq
Z 1

t1=y

KðuÞ
uy

� �q du
u

� �
dt

tqZþ1

¼
y

ð1 � ZÞ
jjKðf ; 
; Lp; ’WW

r
p \ M0Þjj

q

LyZ
q ðdt=tÞ

:

ð2:33Þ
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So we have proved that for f 2 M0

jjKðf ; 
; Lp; ’BB
a;1
p \ M0ÞjjLZ

qðdt=tÞ4CjjKðf ; 
;Lp; ’WW
r
p \ M0ÞjjLyZ

q ðdt=tÞ: ð2:34Þ

Since, by our condition (2.30) on Z; we have yZ ¼ aZ
r > a

r 

1
pa ¼

1
rp: Applying

now Corollary 2.2 to show that the right-hand side of the preceding
inequality is majorized by

jjKðf ; 
; Lp; ’WW
r
pÞjjLyZ

q ðdt=tÞ ¼ jjf jjðLp ; ’WW
r
pÞyZ;q

: ð2:35Þ

By the ‘‘end point’’ version of Holmstedt’s theorem (see, e.g., formula
(3.16)) of [13, p. 186] we have

ðLp; ’WW
r
pÞyZ;q ¼ ðLp; ðLp; ’WW

r
pÞy;1ÞZ;q ¼ ðLp; ’BB

a;1
p ÞZ;q: ð2:36Þ

Thus the right-hand side of (2.35) up to a constant does not exceed

jjf jjðLp ; ’BB
a;1
p ÞZ;q

¼ jjKð
; f ;Lp; ’BB
a;1
p ÞjjLZ

qðdt=tÞ:

Putting together (2.34), (2.35) and the last inequality we obtain required
inequality (2.29). The proof of Theorem A is complete. ]

3. PROOF OF THEOREM B

(a) We apply part (a) of Proposition 1.8 in the case X :¼ Lp½0; 1�; Y :¼
’WW

1

p½0; 1�; Q :¼ M0 and An ¼ S1
n ; n 2 N: It is clear that fS1

ng is an
approximation family. We have to verify that the assumptions of this result
hold true in our situation. In the other words, we should prove

(i) M0½0; 1� has the IPþ with respect to ðLp; ’WW
1

pÞ
(ii) If f 2 ’WW

1

pð0; 1Þ \ M0; then

sM0

n;1ðf ; LpÞ4Cn�1jjf 0jjLp
; n 2 N: ð3:37Þ

But (i) has already been proved in part (i) of Theorem A. To prove the
second statement define sn 2 S1

n \ M0 by

snðxÞ :¼ fDi;n :¼
1

jDi;nj

Z
Di;n

f dx

 !
; x 2 Di;n; i ¼ 1; 2; . . . ; n;
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and snð1Þ :¼ limx!1�0 snðxÞ: Then sn50; since f50: Therefore,

sM0

n;1ðf ; LpÞ4jjf � snjjLpð0;1Þ4
Xn�1

i¼0

Z
Di;n

jf ðxÞ � fDi;n j
p dx

( )1=p

:

Using inequality (2.16) in the proof of Theorem A(i) for the case of the
interval D and f 2 ’WW

1

pðDÞ we have

Z
D
jf ðxÞ � fDjp dx4Cop

1 ðf ; jDj;DÞp4CjDjp jjf 0jjpLpðDÞ
:

Summing these inequalities with D :¼ Di;n; i ¼ 1; 2; . . . ; n; we get (3.37).

Thus, in our case Proposition 1.8(a) implies for f 2 Lpð0; 1Þ \ M0:

sM0

n;1ðf ; LpÞ4CKðf ; n�1;Lp; ’WW
1

pÞ; n 2 N:

It remains to note that the right-hand side is equivalent to o1ðf ; n�1ÞLp
:

(b) First we prove that

ðLp; ’BB
r;1
p Þa

r;1
\ M0 � EM0

a;1ðfSk;l
n g;LpÞ; ð3:38Þ

where r is the smallest integer > að> 1
pÞ: To do this we have to prove the

following abstract Jackson’s inequality: if f 2 ’BB
r;1
p ð0; 1Þ \ M0; k :¼ 3r þ

4; l :¼ r þ 1 then

sM0

n;k:lðf ; LpÞ4Cn�r jf j ’BBr;1
p ð0;1Þ; n 2 N: ð3:39Þ

Then (3.38) will follow from here and Proposition 1.8.
To prove (3.39) make use of the function hn;n constructed in the proof of

Proposition 2.1, but with r þ 1 instead of r: We also take in this case the
subdivision pn :¼ fDi;ng

n
i¼1 from Definition 1.10 for the construction of hn;n:

That is, let In;i from the proof of Proposition 2.1 coincides with Di;n: Then it
follows that the intervals *IIn;i which arise in this proof must each be finite
unions of intervals from the finer subdivision fDi;2ng

n
i¼1: Consequently, the

restriction of the function hn;n constructed in the proof of Proposition 2.1 to
each interval Di;2n is a polynomial of degree not exceeding 3r þ 4:
Furthermore, hn;n 2 Crþ1½0; 1� \ M0: Thus hn;n 2 Sk;l

2n with k :¼ 3r þ 4; l :¼
r þ 1:

Therefore, for f 2 Lpð0; 1Þ \ M0 we get

sM0

2n;k:lðf ; LpÞ4jjf � hn;njjLp ½0;1�:
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By inequality (2.23) we also have

jjf � hn;njjLp ½0;1� 4Cn�1=p
Z n�1

0

orþ1ðf ; sÞLpð0;1Þ

s1þ1=p
ds

4Cn�1=p sup
s>0

orþ1ðf ; sÞLpð0;1Þ

sr

� �Z n�1

0

sr�1�1=p ds

4Cn�r jf j ’BBr;1
p ð0;1Þ: ð3:40Þ

Combining this and the previous inequality we get (3.39) for all even
integers. If n is odd then sM0

2nþ1;k:lðf ; LpÞ4sM0

2n;k:lðf ; LpÞ:
From (3.39) and Proposition 1.8 we have for f 2 Lp \ M0

sup
n2N

sM0

n;k:lðf ; LpÞna4C sup
n2N

Kðf ; n�r;Lp; ’BB
r;1
p \ M0Þna ¼ Cjf jðLp ; ’BB

r;1
p \M0Þy;1

:

Since y :¼ a
r >

1
rp it follows from Theorem A(ii) that M0½0; 1� has the

restricted WIPþ with respect to ðLp; ’BB
r;1
p Þ for y :¼ a

r; i.e. for f 2 Lp \ M0

jf jðLp ; ’BB
r;1
p \M0Þy;1

4Cjf jðLp ; ’BB
r;1
p Þy;1

4Cjjf jj ’BBa;1
p
:

Embedding (3.38) is proved. ]

To prove the opposite statement we need the following version of
Bernstein’s inequality. It can be obtain by a modification of proof for
Lemma 2 in [5, p. 156], see also [14, 17].

Lemma 3.1. Let k; l; 05l5k; be integers and let p 2 ½1;1�: Then there

exists a constant g ¼ gðk; l;pÞ such that

okþ1ðS; tÞLp ½0;1�4gðntÞlþ1þ1=p jjSjjLp ½0;1� ð3:41Þ

holds for all spline functions S 2 Sk;l
n ½0; 1�:

Let now f 2 Lp½0; 1�; and there exists a sequence of splines Sn 2 Sk;l
n ½0; 1�;

k ¼ 3l þ 1; such that

sup
n2N

najjf � Snjjn ¼ Cf51: ð3:42Þ

By Lemma 3.1 each f 2 Sk;l
n ½0; 1� satisfies

okþ1ðf; tÞLp ½0;1�4gðntÞlþ1þ1=p jjfjjLp ½0;1�
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for each n 2 N: This immediately implies the following Bernstein-type
inequality:

jfj ’BBlþ1þ1=p;1
p;ðkþ1Þ ½0;1�

4Cnlþ1þ1=p jjfjjLp ½0;1� for all f 2 Sk;l
n ½0; 1�; ð3:43Þ

where the constant C depends only on l: We now apply part (ii) of Theorem
5.1 of [9, p. 216] in the case where X ¼ Lp½0; 1�; Y ¼ Blþ1þ1=p;1

p;ðkþ1Þ ½0; 1Þ; and
Fn ¼ Sk;l

n ½0; 1�: Since Y is semi-normed we have mðY Þ ¼ 1 in (5.6) of [9, p.
216] and (3.43) corresponds to condition (5.5) of [9, p. 216] with the
parameter r appearing there replaced by r ¼ l þ 1 þ 1=p: Thus we obtain
condition (5.8) of [9, p. 217], which in our case can be written in the form

Kðf ; n�r; Lp; ’BB
r;1
p;ðkþ1ÞÞ4Cn�r

Xn

j¼1

jr�1sM0

j;k;lðf ; LpÞ:

Estimating the right-hand side by (3.42) we have

Kðf ; n�r;Lp; ’BB
r;1
p;ðkþ1ÞÞ4C0n�a for all n 2 N:

Then, by a standard argument we obtain, in turn, that for some C00 ¼
Cðf ; a;p; lÞ

Kðf ; t; Lp; ’BB
r;1
p;ðkþ1ÞÞ4C00ta=r for all t 2 ð0; 1�:

Consequently, f 2 ðLp; ’BB
r;1
p;ðkþ1ÞÞa=r;1 ¼ ðLp; ðLp; ’WW

kþ1

p Þr=ðkþ1Þ;1Þa=r;1: By an
‘‘endpoint’’ version of the reiteration theorem (see e.g. [1]) this last space is
ðLp; ’WW

kþ1

p Þa=ðkþ1Þ;1: In other words, we have shown that the ðk þ 1Þth
modulus of smoothness of f satisfies

sup
t2½0;1�

okþ1ðf ; tÞLp

ta
51

or, equivalently, f 2 ’BB
a;1
p;ðkþ1Þ½0; 1Þ: Hence, f 2 Ba;1

p ½0; 1Þ: The proof of
Theorem B is complete. ]

Remark. (a) It is possible to decrease the numbers k; l in the proof of
part (b). Namely, the following inequality holds for f 2 ’BB

r;1
p ð0; 1Þ \ M0:

sM0
n;r ðf ; LpÞ4Cn�ajf j ’BBa;1

p ð0;1Þ; n 2 N:

Here r > a > 1=p:
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(b) Results similar to Theorem B and that of the previous two remarks
hold for the cone M1 of nonnegative nondecreasing functions on ½0; 1�: In
this case the IPþ of M1 with respect to ðLp; ’WW

2

pÞ plays a basic role.
It is an interesting open problem to determine whether the analog of

Theorem B is valid for the general cone Mk of k-monotone functions with
k52:
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