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In this paper, we present an approach to shape-preserving approximation based on
interpolation space theory. In particular, we prove the corresponding approximation
result related to the intersection property of the cone of nonnegative functions with
respect to the couple (L, B;™). (© 2002 Elsevier Science (USA)
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1. INTRODUCTION

It has been known that the quantitative approximation theory is closely
connected with the real interpolation method. This connection has been
investigated by Peetre and Sparr [24] within the framework of their
interpolation theory of abelian groups, and Brudnyi [4] and by Brudnyi and
Krugljak [6], [7] using the concept of an approximation family”’. Some new
results and applications in the latter direction were presented in the papers
of Pietsch [25], and DeVore and Popov [11]. In this paper, we would like to
present an interpolation space approach to a new area of quantitative
approximation theory, namely, to approximation with constraints, see ¢.g.
[10,12,15,16,22,27,30,31]. It is worth noting that these and other papers
on this subject considered only univariate functions. We hope that the
approach presented here might be useful in many applications for the
multivariate case. We will choose a relatively simple (but highly nontrivial)
approximation model of such a kind (see Theorem B) to show how results of
interpolation theory for operators preserving a convex cone structure can
work in this situation.

In order to formulate the main results we need a few basic definitions and
the corresponding preliminary results.

DEFINITION 1.1.  An approximation family </ = {4,},_, is a collection
of subsets 4,, of a Banach space X satisfying the conditions:
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1. An +Am < Am+n: n,me N:
2. 24, <« A,,neN, 1eR
(in particular, 0 € 4, and 4, < 4,.1).

We put 4y = {0} and A, =X, and denote the sequence {4,; ne
Z, J{+00}} by .

Suppose now that Q is a convex cone in Banach space X. For every
xeX N Q we set

2 )y = inf{|x —ally, a4, nQ}

and define the approximation cone E(XQ p(;z{) to be the set of elements x €
X n Q satisfying

00 1/p
Illge, ) = {Z(nH)1<(n+1)“e,d,,(x)x)p} <00 (LD
n=0

Here 1< p<oo and 0<a<oo. Quantity (1.1) defines a quasinorm on the
cone EZ (/).

Let Y be a linear space equipped with a semi-norm |- |y, linearly
embedded in X.

DEerFINITION 1.2 (DeVore and Lorentz [9]). (a) An approximation
family .« n Q satisfies the abstract Jackson inequality with respect to Y if

eg,n(x)ngn’r|x|y, xe¥YnQ (1.2)

is valid foralln =1,2,... .
(b) .o/ satisfies the abstract Bernstein inequality with respect to Y if

loly <Cr'llolly, @€, (1.3)

isvalid forn=1,2,... .
Here » > 0 is a fixed number and C;, C; > 0 are absolute constants.

Our next definition introduces the interpolation cone (X,Y N Q),, 0 €
(0,1), g €[1,00] as the subset of elements x € X N Q satisfying

IXllee,vn0),, = K@ XY 0 Dllzsaryn < 00,
where

K, X,Y 0 Q)= inf {[lx — yllx +#llylly} (> 0)
yeOnY
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and

1)
t9

00 9 dt 1/q
i gan = ([ 150 §)
0

It may be noted that K-functionals with cone constraints of a different
kind were introduced in [18, 19, 26, 28, 29].

Remark 1.3. The same definitions of the interpolation cone (Xp, X; N
Q)y, and K(x,-; Xo, X1 N Q) can be related to the case of a Banach couple
X = (Xp,X;) and a convex cone O C X + Xj.

The following simple result can be derived in the precisely same
manner as Theorem 9.3 of [9].

ProposITION 1.4. (a) Suppose that condition (1.2) holds. Then for every
xeXnQandn=12,...

¢ Ny <(C+ DK(x,n ",X,Y nQ), neN. (1.4)

Here C >0 is an absolute constant.
(b) If, in addition, the condition (1.3) also holds, then

E@{Q,q(&{) = (X, Yn Q)a/r,q (15)
with equivalence of their (quasi) norms.

We now introduce the notion of intersection properties which allows to
reduce the real interpolation for cones to the classical real interpolation, see,
e.g. [20, 21,28, 29].

Let X = (Xp,X;) and O be as in Remark 1.3.

DEFINITION 1.5, O has the right intersection property (IP,) with respect
to X if

Xo+tX1)nQ < Xo+tXi n Q) (1.6)

with an embedding constant independent of ¢.

In other words, the IP, is equivalent to the two-sided inequality
K(x,:X0, X1 0 Q) ® K(x,; X)  (t>0,x€ Q) (1.7)

with constants of equivalence independent of x and ¢.
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Since the right-hand side is evidently dominated by the left one, the main
point is to prove the inequality

K(x,t; X0, X1 0 Q)<cK(t,x,X), (feQ, t>0) (1.8)

with ¢ independent of x and ¢.
The IP, implies the following isomorphism of the cones:

0N X, X1 nQ)y,=Xogn 0  (0<b<1,1<g<o0). (1.9)

DEFINITION 1.6. O has the weak right intersection property (WIP,) with
respect to X if isomorphism (1.9) holds for every 6 € (0,1), ¢ €[1, o0].

For the results related to shape-preserving approximation we also need

DEFINITION 1.7. A cone Q is said to have the restricted WIP, with
respect to X for a fixed 0 € (0, 1), if the isomorphism

0N (X0, X1 0 Q)y, = Xog 0 0 (1.10)

holds for every ¢ €[1, c0].

The next result shows the role of the intersection properties for
approximation with constraints.

ProrosiTION 1.8.  (a) Suppose that condition (1.2) holds. Let Q, in
addition, have the IP, with respect to (X,Y). Then for every x € X n Q and
neN

¢, () <CK(x,n", X, Y). (1.11)

Here C >0 is an absolute constant.
(b) Suppose that conditions (1.2) and (1.3) hold. Let, in addition, Q have the
restricted WIP, with respect to (X, Y) for 0 =2 Then

ES () = Eyg(/) 0 Q.

Here 0<oa<r and 0 <g<oo.

Proof. (a) The result immediately follows from Proposition 1.4(a) and
the IP;.
(b) From Proposition 1.4(b) and the restricted WIP, with 0 := % we have

E2 (o) =(X,Y N Q)%’q =X, Y)%’q N 0.

But (X, Y)g’q = E,4(o), see e.g. [9], and the proof is complete. 1



CONES & SHAPE PRESERVING APPROXIMATION 27

In order to formulate the basic result of this paper, we introduce:

DEFINITION 1.9. For o> 0 we write » = [o] + 1. The semi-normed Besov
space B} ([a.b]), 1< p<oo consists of all functions f € L,[a,b] for which
the semi-norm

| gz~ = sup (" n(f, 01 jap)
r 0

1s finite.

The normed Besov space B> ([a,b]) by definition equals L ﬂB . Here
w, deltcnotes the modulus of smoothness of order r.

W, = W »10:1] denotes also the Sobolev space of functions f € L,[0, 1]
equipped by the semi-norm |/ ®; ).

Let now My = My[0, 1] be the cone of nonnegative functions on [0, 1].

THEOREM A. Let 1< p<ooand o> 1/p. Then

(i) Mo has the IP, with respect to the couple (L,, W;). o
(i) Mg has the restricted WIP, with respect to the couple (L p,B:’OO) for
each 0 > o see Definition 1.7.

These interpolation results allow us to demonstrate a new approach to the
problem of shape-preserving approximation. We choose for this goal a
result of positive spline approximation (see Theorem B). Another approach
of this type is seen in [15,16]. In what follows, we require the following
notions.

Let 7, be a subdivision of [0,1) into the »n half-open from the right
intervals which are obtained by the following procedure. Write 7 in the form
n =2k 4 j, where n/2<2¥<n and 0<j<2* (the representation is, clearly,
unique). Divide [0, 1] into 2* equal intervals and then divide each of the first
j intervals from the left in half. The subdivision obtained will be denoted by
Ty = {Ai,n}?:y

DErINITION 1.10. A function s : [0, 1] — R is said to be a spline of order
k and smoothness /, if s € C'[0, 1] and the restriction of s to each interval 4;,,
of the subdivision 7, is a polynomial of degree not exceeding £ — 1. We
denote the linear space of such splines by S%/[0, 1].

When k>2 we shall always assume that 0</<k — 2. (Otherwise S¥/ is
simply 2;_1.) We shall also consider the case of k = 1, i.e. the space of step
functions which are constant on each of the intervals 4;,, i =1,2,...,n. We
let / = —1 in this case (more generally, S~ is the linear space of (possibly
discontinuous) functions whose restrictions to each interval 4;, of the
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subdivision 7, are polynomials of degree not exceeding k£ — 1). Let

M, .
Ot (fiLp) = inf [If = sl .1)-

sn€S My

In the case of splines of maximal smoothness, i.e., [ = k — 2, we will omit
the index / in all the preceding notation.

THEOREM B. (a) Let pe[l,00]. If f € L,(0,1) N My then

af(l‘(f;Lp)<Cw1<f,llq> , neN, (1.12)

Ly

where C is a constant independent of n.

(b) The function f belongs to B%>* N M,, o> %, if and only if
there is a sequence {S, € S*'[0, 1]~ My}, of splines of degree k = 3r + 4
and smoothness /=r+ 1, where r is the smallest integer >, such
that

SuNp na||f—Sn||Lp(0,1)<OO. (113)
ne

Remark. (i) Taking into account part (a) of the theorem, we see that
actually, for all « in the larger range o >0, except when o = p = 1, the
condition f € B3> n M, always implies (1.13).

(i) Part (a) of this theorem is a special case of Theorem 4 in [15],
formulated in this paper without proof. Apparently, statement (b)
may also be proved by methods of paper [16], see proof of Theorem 15
therein.

2. PROOF OF THEOREM A

(i) Let feL,and f>0. Set for 0<x<1 —¢

x+t
filx) = ;/ f(s)ds (2.14)

and extend it to [1 —7,7] by ]f,(x) = fi(l —1).
Then f,(x) eMy [0, 1] n W, and therefore

-1 .
K(f,t,Ly Mo, Wy a Mo)<ILf = fill, + 1]l (2.15)

Since K(f,t,Lp, W;) ~ w(f, t)L,, (see, e.g. [9]) it remains to prove that
the right-hand side of (2.15) is bounded by w;(f, t)Lp.
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We have

1—t¢ 1 t 14
1=t = [ [ = ree e ax

1
+/ ) — Sl — 0 de = I + b
1—¢

By Holder’s inequality we get

1 t 1—¢
ned o[- s op arsotir,

Applying now the Lebesgue inequality (cf. [9, p. 30]) and then a Whitney-
type inequality (see the general case in [2]) we get

L<CE(f:[1 — 1, 1), <Col(f.0),. (2.16)
Here and below C denotes an absolute constant, not necessarily the same
(in this case, independent of f and ¢). Putting these inequalities together we
get
1f = fillo, <Con(f.1), .

To estimate the second term of (2.15) we note that for a.e. x € [0, 1]

£lx) = {%Atf(x) if 0<x<<1 —1,

0 if 1—r<x<l.
Therefore
A1), <or(f.0),.

whence the result follows.
(i1) We have to prove that

(Lp, B O Mo)y (L, B} )y, 0 Mo,

where o > 1/ p. This embedding is a consequence of the following:

PROPOSITION 2.1.  Let f € L,[0, 1] n My, where 1 < p<ooandletr>1/p
be an integer. Then for every te(0,1] there is a function h, € W, M
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such that
f = hell 0.1y + fr||h§r)||L,)(o,1)
twr(fa S)L ! wr(fa S)L
Up [ 170 r T
<C{t /0 RESYP ds +t /t e ds}. (2.17)
Proof. We can suppose that [ %du <oo which implies that f

coincides a.e. with a continuous function on [0, 1]. It suffices to construct 4,
with ¢ = %, n € N. Consider first the case n>2. Introduce a subdivision 7, of
the interval [0, 1] into the subintervals I,; where I, = [Xpx—1,%nk), k =
l,...,n—1 and I, = [Xyu—1,Xnn], Xp0 =0 and x,, =1 satisfying the
condition that there are constants ¢, f > 0 independent of £ and n, such that

2 il <L (2.18)
n n

Consider the enlargements of 7, defined as follows: in,k = [@n k> Xnils
k=2,...,n, where a,; = %, and 1,1 = [0,x,,1].

Let Py e W,,I(in,k) be the polynomial of best uniform approximation
of f eMo(fn,k). Then Pn,k =P — min{infjn‘k P,,,k:O} iS a nonnegative
polynomial providing near best approximation on /,;:

I = Paille g0 < 20 = Paslle @, = 2E—1(f> Lup)r o)

<o, <f : |I””‘|) : (2.19)
Lﬁc(in,k)

7

The last inequality follows from Whitney’s theorem and y does not depend
on f and f,,,k.

We now construct the required sequence {/,4}1<i<p-

Set for x € [0,x,,1]

hn,l (x) = Pn,l(x)(>0)'

Suppose now that £, ; have already been defined for j =1,...,k, where
k<n. We define A, ;.1 by
hn,k(x) if O<x<an,k+l:
hngs1(6) = P = p, O]+ Prps1 (0)p, () i @ypr1 <x <X,

mk+1(%) if X0 <x<Xpji1,
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where
Pus(X) = Bk (t = @pp1) Copge — 1) dt
A k+1

and the normalizing coefficient f,, is determined by the condition

pn,k(xn,k) = 1 .

Then 0<p, 4 (x)<1 for x € [@npr1,Xnil-
It is the matter of checking definition that {A,;} has the following
properties:

(@) hyx € C’[O Xni] O Mo;
(b) hnk - nk for X f— 1(2<CX<3)§gk’ \I |
© I = Mkl o,y S0 el 221 <k OS50 4, T oF

(f 2y, oo

Thus, the sequence {%,}<i<, has yet to be constructed. Now define the
desired function h, with 1 =1 by

hl = hi’l,i’l .

Then h, € C'[0, 1] N M, by (a). Moreover,

2 ? 1,
1S = el 0.6y, S < C(“ = {2 >, ( |rj|) }
x‘(ln‘_/)

I1<j<n—1
I?‘l n
+ of (f, u) .
") Lo(un)
Since h; = hy, = Nn,,,(x) if x € [apny1,1] < f,,,n, we also have
(2C(OC ﬁ)?)p |1,
1 = hllf oy S ()
LUV NG P

These two inequalities lead to the estimate

202C(e, Byy)” I
I =hllf oy <=——"== > wf(fi=F) .
Loo(In)

n 152, r
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We now recall the embedding estimate already used at the beginning of
the proof

r(f )L »(a,b)
O (D1 0y SC () / ?1/} ds.

Using this together with an integral form of Minkowski’s inequality, we
then obtain

Lf = hellg o1y

C(p) 1/p
< C(as ﬁa V)nil/p / " SII/P{ Z C()f(f, S)L (I~ )} dS. (220)
0 pdnj

1<j<n

To estimate the sum in (2.20) we apply the following result (see [3,
Theorem 4, Section 2] or [5, Theorem 1]):

1/p
O o)) = sup{z Ef. D} } <s<b%“>, (221)

len

where the supremum is taken over all families = of nonoverlapping
subintervals of [a, b] of length s and the constants of equivalence depend
only on r and p. From here it follows that for all s € (0, M) we have

n 1/p 1/p
{Z wﬁ’(f,s)Lpa,,,k)} <C{Z S E(f, I)L} NG Jo)
k=1

k=1 lem,

Here 7,4 is a family from (2.21) (with [a, b] = i,,,k) for which the supremum
is attained within e. Because of the choice of intervals 7 nk» ANy two intervals
I € myp and I’ € m,y 5 are nonoverlapping. Dividing the family (J;_, 7,4 into
two subfamilies of nonoverlapping intervals and applying (2.21) to each of
these families we estimate the right-hand side of (2.22) by Ciw,(f, S)L,0.1)
with C; depending only on r.

From this estimate and (2.20) it follows that || f — hallg jo,1y is dominated

by CP(EER), where W(f) = ¢1/7 [1 20000 4o 45,

S 17p

Since Y’(%;B))gC(oc, B, r)lP(;) this leads to the inequality
1
1 = Al o <CY() (z _ n) (2.23)

To obtain (2.17) it now remains to estimate the Sobolev norm of
h(= hy,). Since h,, is a spline of degree <3r with almost uniformly
distributed knots, we can apply Markov’s inequality (see, e.g. [9, p. 103]) to
estimate
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(ho — h)"” with t =1 So we have

n 1/p
||<hz,—ht)‘”nL,,[o,us{; ||(hzt—ht)“)nfp(imk)} <Crvn. (224)

Choose m € N such that 27" ' <z =12,
Then

12z o < > Wz — R )l o,y + A5 o1 (2.25)
j=1

Since hom; = hy = hy is, by construction, a polynomial of degree <r — 1,
AS), = 0 and from (2.24) and (2.25) we deduce that

m Y (f,s)
(1 p— r\J »®J)L,[0,1]
||h§r)||Lp[0,1] <C Z @/ r)/o Tl/ppds
=

mo 2 Y (f, S)L,0.1] du
—C Z/2f|t</0 sl+1/p ds w1/t (2.26)

=

By eclementary properties of w, (see, e.g. [9, p. 45]) the preceding
expression is dominated by {¢r~+1/7 fémds + j;l Mds}.

Sl+1/p SH»I
Together with (2.23) this proves inequality (2.17) in case ¢ = 1/n and
n=2.
It remains to consider the case t = 1. Let P be a polynomial of degree

<r — 1 for which

ILf = Pllg o1y = Er1(f5[0, 1], -

Set Ay := P — min{infyo,;; P,0}. Exactly as in the argument just after (2.19)
we get

1 = Al o + 11z 0. =1 = Aalle o1

lwr(f.a S)L 0,1
< IIf—h1||Lx[0,1]<c/0 DL g (2.27)

sl+1/p

The proof of the proposition is complete. 1
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COROLLARY 2.2 If 0> then

MO N (Lps er N MO)G,(] = (Lp: er N MO)@,q = (Lp7 er)@,q N M0~

Proof. For each fe(L,, W;)e’q NMy < L, n My we have from Propo-
sition 2.1 that

K(t") =K(f,1", Ly, W, 0 My)

r(f, u)L lwr(fs u)L
1/ M 14
<c[t p/o et du /t e du}

Applying the L’Q(df) norm to both sides and then using Hardy’s
inequalities, we have for 0 > lp

¢ ‘ol Lo (f.u)y,
Ky <€ ’I/P/T/p’d” . ’r/ )l
o Lt/ 4 u Li(dt/1)
S Clleor(f5 ) Mgy (2.28)

This last expression is equivalent to the L;O(dt/t) norm of the function
K(f, 1, Lp,W ), i.e. we have shown that ||K||Lro(d,/, <C|f|(L,,W )“ Since
the reverse mequahty is obvious, this shows that Mo (Lp, W, Mo)y,

=(Lp, W »)og N Mo. Finally, it is easy to check that any function in (L,

mMo)g must be nonnegative a.e. and so (L,, w' mMO)Qq =My n
(L s W N Mo)e 4 completing the proof of the corollary. I

To complete the proof of Theorem A it suffices to show that for f € M
IK(f, Ly, BO;OO N MO)HLg(dz/z) <CIK(f,+ Ly, BG;W)HLZ(dt/t)s (2.29)

provided

1
—<n<l1 and I<g<oo. (2.30)
po

Given any o> 1/p we set » =[] 4+ 1 and 0 = 2. Then

+ 0,00

(Lps W g =B
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and 0>~ 1 . So we can apply Corollary 2.2 to obtain that for each f € M,

K(f) taL[b Bo; N MO)< CK(f’ taLpa (Lp: W;)G,x N MO)

< CK(fot, Ly, (Lps Wy v Mo)g). (2.31)

To estimate this last expression we apply a following variant of
Holmstedt’s formula (for proof see [21]).

ProrosITION 2.3.  Suppose that for fixed 0 €(0,1) and g e[l,00] the
isomorphism

Q N (XO,XI N Q)(),q = (X07X1)(),q N Q

holds. Then

ds\ '/
K(f.1°, X0, (X0, X1 0 O)y,) ~ 1 (/ [s"K(f.5, X0, X1 0 Q) ) .

Combining Corollary 2.2 and this proposition we get

K(f,S,Lp, W’p N MO)
t sup

s>11/0 50

. (2.32)
Li(dt/1)

||K(f9 taLpa BD; r\1‘40)||L”(dl‘/t)<cw

To estimate the right-hand side of (2.32) we note that, since the function
K(s) = K(f,s,Lp, W; N My) is increasing, it satisfies

0 1/
([ ()2

for every s > 0. Then taking the supremum over s>/ and changing the

order of integration we get
K@)\ du\ dt
0 11 7
( )/ < A/“ ( u@ > )tqn—H

= (l )HK(fa 9Lp> W N MO)H ()"(dt/t)'

q
K
ts (];a S)

s=11/0 N

Li(at/1)

(2.33)
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So we have proved that for f € M

||K(f9 ',Lpa BO;;OO N MO)“L"(dt/t)\CHK(fa 9L b W N MO)HL (234)

””(dz/t

Since, by our condition (2.30) on 5, we have Oy = = > 2 ﬁ Applylng
now Corollary 2.2 to show that the right-hand 31de of the preceding
inequality is majorized by

KCE s Lo Wl = 1t (235)

By the “end point” version of Holmstedt’s theorem (see, e.g., formula
(3.16)) of [13, p. 186] we have

Los W ong = Lo Lps W) g = L B, (2.36)

Thus the right-hand side of (2.35) up to a constant does not exceed

50000
“f”(LP,B;”“)n_q = [IK(, SoLp, Bp )”Lg(dt/ty

Putting together (2.34), (2.35) and the last inequality we obtain required
inequality (2.29). The proof of Theorem A is complete. 1

3. PROOF OF THEOREM B

.(]a) We apply part (a) of Proposition 1.8 in the case X = L,[0,1], ¥ :=
w,0,1], O0:=M, and 4,= Sl, neN. It is clear that {S!} is an
approximation family. We have to verify that the assumptions of this result
hold true in our situation. In the other words, we should prove

(1) My[0, 1] hzils the /P, with respect to (L, W' »)
(i) If e W ,(0,1) n My, then

ot (fiLp)<Cn ', neN. (3.37)

But (i) has already been proved in part (i) of Theorem A. To prove the
second statement define s, € S,l N My by

1
Sn('x) ::fAm<:: |A |/ fdx>9 xeAi,ny i:lyzy"'ans
inlJ A,
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and s,(1) := lim,_,;_¢ s,(x). Then s,>0, since f>0. Therefore,

n 1/p
o’,t{?(f;Lpan—sn||L,,(o,1)<{Z ICE fA,n|de} .

Using inequality (2. 16) in the proof of Theorem A(i) for the case of the
interval 4 and f € W' »(4) we have

/ f@) = fal? dx<Cof(f, 141, 4), <CIAPIFI -
A

Summing these inequalities with 4 .= 4,;,, i =1,2,...,n, we get (3.37).
Thus, in our case Proposition 1.8(a) implies for f € L,(0, 1) n My:

oM (f1L) <CK(fon™ 'L, W), neN.

It remains to note that the right-hand side is equivalent to w;(f" ,n‘l)Lp.
(b) First we prove that

(L,,,B )u N My = EYS ({SK'), L), (3.38)

where 7 is the smallest integer > a(>1). To do this we have to prove the
following abstract Jackson’s inequality: if f e B:;OO(O, )My, k=3r+
4,/ =r+ 1 then

ort i3 Lp) <Cn"|f g~ neN. (3.39)

Then (3.38) will follow from here and Proposition 1.8.

To prove (3.39) make use of the function #,, constructed in the proof of
Proposition 2.1, but with » + 1 instead of ». We also take in this case the
subdivision =, := {4,,};_, from Definition 1.10 for the construction of , .
That is, let /,; from the proof of Proposition 2.1 coincides with 4;,. Then it
follows that the intervals I~n,,< which arise in this proof must each be finite
unions of intervals from the finer subdivision {4,,,}7_,. Consequently, the
restriction of the function 4, , constructed in the proof of Proposition 2.1 to
each interval A4;,, is a polynomial of degree not exceeding 3r+ 4.
Furthermore, #,, € C"*'[0,1] n My. Thus h,, € S’z‘;f with £k =3r+4, [ =
r+ 1.

Therefore, for f e L,(0,1) n My we get

oﬁf{ik_,(f; Lp)<IIf = huullz,jo.17-
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By inequality (2.23) we also have

. (f, S)Lp(o,l) ds

_ -1/
1 = llgony <CrVr 7 2SR

n*l
- Cnl/p( up wr+1(f,S)Lp(o,1)) / -1-1/p g
0

s>0 s”

< Cn "1l (3.40)

Combining this and the previous inequality we get (3.39) for all even
integers. If » is odd then O'g,‘;l,k,,(f;Lp)<0§/f,",k_,(f;Lp)-
From (3.39) and Proposition 1.8 we have for f e L, n M

M . — 700
suNp G (s Lpn”<C surg K(f,n",L,,B, 0 Myn" = C|f|(Lp’B;ngo)0’x.
nel nel

Since 6 ::%>rL it follows from Theorem A(ii) that Mo[0, 1] has the
restricted WIP, with respect to (L, B;;OC) for 0 =% ie. for fel,n M

r

Vi ot <l iy, . <Ol

0,00

Embedding (3.38) is proved. 1

To prove the opposite statement we need the following version of
Bernstein’s inequality. It can be obtain by a modification of proof for
Lemma 2 in [5, p. 156], see also [14, 17].

LemwmA 3.1.  Let k,1,0<[<k, be integers and let p € [1,00]. Then there
exists a constant y = y(k, I, p) such that

@108, 0.1 < 7)) T VPISI o (3.41)

holds for all spline functions S € Sff’l[O, 1].

Let now f € L,[0, 1], and there exists a sequence of splines S, € Skio, 11,
k =3[+ 1, such that

sup |l — Syll, = C <. (3.42)
neN

By Lemma 3.1 each ¢ e %[0, 1] satisfies

4141
i 1(D, O 0,17 < (1) A /p||¢||Lp[o,1]
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for each n e N. This immediately implies the following Bernstein-type
inequality:

] mem”<cn’+‘+‘/P||¢>||Lp[0,1] for all ¢ e SK[0,1], (3.43)

pilk+1)

where the constant C depends only on /. We now apply part gii) of Theorem

5.1 of [9, p. 216] in the case where X = L,[0,1], ¥ = B'/;1//”*[0, 1), and

@, = S%'[0,1]. Since Y is semi-normed we have u(Y) =1 in (5.6) of [9, p.
216] and (3.43) corresponds to condition (5.5) of [9, p. 216] with the
parameter r appearing there replaced by p =7+ 1 + 1/p. Thus we obtain
condition (5.8) of [9, p. 217], which in our case can be written in the form

K(fun " Ly, B )<Cn Y jo- ek (L),
j=1

Estimating the right-hand side by (3.42) we have

K(f.n Ly, B ) <Cn*  forall neN.

Then, by a standard argument we obtain, in turn, that for some C” =
C(f7 a) p’ l)

K(f t,Lp, B, ) <C'e? for all te(0,1].

- - k1
Conseq}lently, f € (L, Bi?,fﬂ))a/p:w = (L, (L, W]; )ﬂ/(kﬂ),oq)a/p,w. By an
“endpomlt” version of the reiteration theorem (see e.g. [1]) this last space is
Lp, ; )a/(k+1),00- 1N Other words, we have shown that the (k+ 1)th
modulus of smoothness of f satisfies

wk+l(f: ZL)Lp
T a <X
1€[0,1] t

or, equivalently, feB;’zH)[O,l). Hence, f e B7™[0, 1). The proof of
Theorem B is complete. 1

Remark. (a) It is possible to decrease the numbers £, / in the proof of
part (b). Namely, the following inequality holds for f e B'I;OO(O, 1) N My:

M . - :
Tup (3 Lp) < Cn "I {1z o m €N

Here r>a>1/p.
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(b) Results similar to Theorem B and that of the previous two remarks
hold for the cone M; of nonnegative nondecreasmg functions on [0, 1]. 1
this case the IP, of M; with respect to (L, W ) plays a basic role.

It is an interesting open problem to determlne whether the analog of
Theorem B is valid for the general cone M; of k-monotone functions with
k=2.
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